WHIM Backlight

Scaling relation fudge factor

Point source contaminant Cooling problem get-out clause

# ASN/GALAXY COEVOLUTION

# Kirpal Nandra Imperial College London



With help from... Antonis Georgakakis, Elise Laird, Kevin Bundy, Alison Coil, Darren Croton and the AEGIS team....

> **Imperial College** London

## **AGN EVOLVE**





Hasinger et al. (2005) Also Ueda et al. 2003

La Franca et al. 2005

Typical BH mass or accretion rate reduces with *z*?



K. Nandra: AGN/Galaxy Coevolution Columbia Warm/Hot Universe Imperial College London  $\rho_{\rm BH}$ 

## **GALAXIES EVOLVE**





K. Nandra: AGN/Galaxy Coevolution Columbia Warm/Hot Universe Imperial College London

#### **GALAXIES AND AGN CO-EVOLVE**



 Black hole mass correlated to host galaxy bulge mass.



Formation of bulge and growth of black hole are related.



AGN play a significant role in the evolution of galaxies

Magorrian et al. 1988; Gebhardt et al. 2000; Ferrarese & Merrit 2000; Tremaine et al. 2002



# **GALAXIES EVOLVE (2)**

DEEP2 survey, 0.4<z<1.4; Willmer et al. 2006

Dry mergers?

- Colour bimodality:
  - Blue cloud: active star-forming

# KEY QUESTION: WHAT IS THE QUENCHING MECHANISM?

via mergers in blue cloud

- Rapid quenching to red sequence. Mechanism?
- Further red sequence growth via "dry mergers"?



e.g. Strateva et al 2001; Bell et al 2004; Faber et al 2008



Imperial College London

#### **QSO MODE FEEDBACK**



- Gas rich major merger
- Inflows trigger BH accretion & starbursts
- Dust/gas clouds obscure AGN
- AGN wind sweeps away gas, quenching SF and BH accretion.

Hernquist (1989) Springel et al. (2005) Hopkins et al. (2006)





#### FEEDBACK AND THE M-σ RELATION

#### Winds drive out gas from galaxy when:

$$M_{BH} = \left(\frac{\alpha \kappa}{G^2 c}\right) \sigma^5$$
 Silk & Rees (1988)

$$M_{BH} = \left(\frac{f_g \kappa}{2\pi G^2}\right) \sigma^4 \qquad \text{King 2003}$$

$$M_{BH} \propto \sigma^{\beta}$$
  $\beta = 4.0 \pm 0.3$ 

Tremaine et al. 2002



#### **CO-EVAL STAR FORMATION/BH GROWTH?**

- Submm emitting galaxies undergoing intense SF
- Many detected in X-rays
- >40% (100%?) of radio bright sources w/submm emission are AGN
- "Continuous" BH growth
- Hard X-ray spectra
- Co-eval obscured SF and accretion: QSO mode?



Chapman et al. 2003; Alexander et al. 2005a,b



#### **CO-EVAL STAR FORMATION/BH GROWTH?**



Pure submm sample of Pope et al. (2007)

~25% AGN, spectra not particularly hard

**Laird et al. (2008)** 



#### RADIO MODE FEEDBACK

#### Croton et al. 2006



#### RADIO MODE FEEDBACK

#### Croton et al. 2006



#### **AGN FEEDBACK**

|                | When?          | Trigger?                    | Feeding?                   | Consequence?                                    |
|----------------|----------------|-----------------------------|----------------------------|-------------------------------------------------|
| Quasar<br>Mode | at early times | gas rich mergers            | cold gas                   | BH growth,<br>sets properties of<br>ellipticals |
| Radio<br>Mode  | at late times  | BH & hot halo large enough? | hot gas?<br>stellar winds? | suppresses cooling gas,<br>shuts down SF        |

A complete picture of galaxy evolution probably needs both

London

### THE AEGIS SURVEY

- AEGIS-X
- Chandra AO-3:

200ks over 0.08 deg<sup>2</sup>

(Nandra et al. 2005)

Chandra AO6:

**1.4** Ms over **0.5** deg<sup>2</sup>

80 (70)% of soft (hard) XRB

(Laird et al. 2008)

Chandra AO-9:

#### **1.8 Ms over 0.2 deg<sup>2</sup>**

 DEEP 2/3 spectroscopy, FIDEL MIPS, HST, IRAC GTO, VLA, GALEX, CFHTLS blah blah blah



aegis.ucolick.org; Davis et al. (2007)



#### THE AEGIS-X SURVEY



X-ray: Laird et al. 2008

- 1325 X-ray sources
- ~35% spectroscopic completeness
- (DEEP3  $\Rightarrow$  60%)
- Photometry, BRIK
- (CFHTLS/IRAC, good photoz)

#### Spectroscopy:

- Keck/DEEP2 (Davis et al. 2003)
- MMT Coil et al. (2008)



### RELEVANT OBSERVATIONS

- AGN host galaxy colours and star formation
- Morphologies
- Stellar Mass Function
- Large scale structure environment
- Relationship to groups





#### THE AGN COLOR-MAGNITUDE RELATION





K. Nandra: AGN/Galaxy Coevolution Columbia Warm/Hot Universe Imperial College London

#### THE AGN COLOR-MAGNITUDE RELATION



Coil et al. 2008





#### X-RAY STACKING VERSUS COLOUR

#### Georgakakis et al. (2008)





- Hard signal around valley and in red cloud,  $\Delta C > -0.15$
- Obscured AGN associated with transition galaxies



#### **AGN HOST MORPHOLOGIES**



- CDFs+AEGIS 0.7<z<1.3</li>
- Bulges dominate (merger remnants?)
- Spirals 2<sup>nd</sup> larger group
- Ongoing interactions minority



#### **HOST GALAXY MORPHOLOGIES**



# MASSIVE, BULGE DOMINATED, RED, EVOLVED HOSTS



Abraham et al. 2003; Lotz et al. 2004

Pierce et al. 2007



Imperial College

#### **AGN STELLAR MASS FUNCTION**







No Evidence for AGN Hosts "Downsizing" in mass

#### ⇒Accretion rate evolution?

Also Babic et al. 2007



#### LARGE SCALE STRUCTURE ENVIRONMENT



AGN: Massive galaxies tracing large scale structure

Also ECDF-S: Silverman et al. 2008; Xbootes Murray et al. 2005; Hickox et al. 2008



#### LARGE SCALE STRUCTURE ENVIRONMENT



Georgakakis et al. (2007)

Comparing with galaxies samples same range of LSS



#### **AGN/GALAXY CROSS-CORRELATION**





#### **AGN: RELATIONSHIP TO GROUPS**

- Gerke et al. (2006) optical spectroscopic groups
- 40% of X-ray AGN in groups
- Excess compared to general population (~99%)
- Tentative excess relative to matched galaxy population (~90%)

See also: Miyaji et al. 2007; Silverman et al. 2008





#### **NON-DETECTION OF DEEP2 GROUPS**

Spectroscopically selected groups at z>0.7 (Gerke et al. 2006)



Fang et al. (2007)



## CONCLUSIONS

- Typical AGN at z~1 are in massive, red host galaxies
  - Star formation has terminated or is terminating
  - Many obscured AGN on red sequence
  - Bulge dominated, ~0 mergers
- Stellar Mass Function
  - Flat, non-evolving, no downsizing in mass
- Large scale structure environment
  - Dense environments (cluster like hosts)
  - Around ~50% in groups
- Most BH growth not in "QSO mode"
- No high z group extended X-rays (yet)
- More to come!





#### Morphology of AGN hosts at z~1



- CDFs+AEGIS 0.7<z<1.3</li>
- Bulges dominate (merger remnants?)
- Spirals 2<sup>nd</sup> larger group
- Ongoing interactions minority





# AGN host galaxy morphology: mergers or merger remnants?



- AEGIS and CDF-North
- Morphological classification (HST):
  - mergers (ellipticals, interacting, QSOs)
  - Disks (spirals)







#### X-ray source optical morphology

# Gini– $M_{20}$ diagram (Lotz et al. 2004):

- Gini: distribution of galaxy's flux
- M<sub>20</sub>: 2<sup>nd</sup> moment of the brightest 20% of the galaxy's flux



X-ray AGN: bulge dominated





#### **COLOUR-DEPENDENCE**

#### AGN on red sequence are more clustered than in blue cloud



#### Coil et al. in prep







## AGN in post-starbursts at z~1

: AGN/Galaxy Coevolution





## 44 AEGIS galaxies with post-starburst spectra (0.7<z<0.9)

- stacking: hard mean X-ray spectrum
- X-ray detections: high fraction of X-ray sources in post-starbursts (98% significance)



# Stellar population of AGN hosts at z~1: evidence for starbursts?

- CDF-South:
  - X-ray: AGN
  - Ultra-deep radio (1.4GHz): dominated by starbursts
- mid-IR: Radio emission of some AGN associated with star-formation





# Environment of AGN at z~1: field or groups?

AEGIS group catalogue (Gerke et al. 2005)

40% of AM in groups





#### **DEEP VS WIDE**



Bright sources only (~Bootes limit)



Imperial College London

#### **OPTICAL IDENTIFICATION**

ID of SCUBA source GN11 (w/Alex Pope + Douglas Scott UBC)

HST/ACS

IRAC 3.6mm

MIPS 24mm

radio









Alexander et al X-ray c/part

Pope et al. c/part

- ⇒ SCUBA AGN fraction may be lower than Alexander et al. (2005)
- Chance projections in AEIGS to I=25:

7% IDs at 1.5"; 20% at 3"; 30% at 5" REAL IDs are optically fainter  $\Rightarrow$  high z?

⇒ MAJOR IMPACT ON NUMBER OF HIGH Z AGN/REIONIZATON



Imperial College London

#### X-RAY INCOMPLETENESS

- X-ray images are
  - Highly inhomogeneous
  - In poisson regime
- Source detection "black box" (e.g. wavdetect)
- Detection inconsistent with sensitivity
- Eddington bias, poisson noise, incompleteness
- Embodied in sensitivity curve

Georgakakis et al., in prep









#### DO X-RAY SURVEYS FIND ALL AGN?

- Heckman et al. (2005) say OIII better at selecting local AGN than X-ray
- Steidel et al. (2002) found 70% of X-ray AGN at z=3 LBGs from spectroscopy
- Also one AGN X-ray undetected in 1 Ms
- Sarajedini et al. (2006): 70% of optically variable nuclei
   X-ray undetected (200ks Chandra)
- AEGIS (Renbin Yan, Berkeley):
  - 60% of X-ray sources have AGN line ratios
  - 10% have no OIII
  - Only 30% of line-ratio selected (candidate) AGN are X-ray sources!

Not to mention Spitzer selection... need multi-λ approach

Put remember flux limits...

K Nandra: AGN/Galaxy Coevolution

Imperial College

K. Nandra: AGN/Galaxy Coevolution Columbia Warm/Hot Universe

London

### **OTHER ISSUES**

- Separating AGN and starbursts
- Is it reasonable to assume Compton thick evolve like unobscured
- Is alpha\_ox dependent on UV luminosity really?
- How does variability affect SEDs. Dispersion?
- Effects of variability effects on photoz?





## CLUSTERING vs. HOST LUMINOSITY



